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Breaking of relativistic simple waves 

By 0. M U S C A T 0  
Dipartimento di Matematica, Vide A. Doria 6, 95125 Catania, Italy 

(Received 17 March 1987 and in revised form 2 February 1988) 

The breaking of relativistic simple waves, for one-dimensional flow in the space-time 
of special relativity, is investigated. The cases of relativistic acoustic and 
magnetoacoustic waves are treated in detail and the critical time for breaking is 
evaluated. 

1. Introduction 
Simple waves are the nonlinear analogue of the plane travelling waves of linear 

theory. Under certain conditions, the profile of a simple wave steepens, owing to the 
nonlinearity of the evolution equations, and the wave breaks. Under suitable 
conditions this phenomenon can be interpreted as implying shock formation 
(Whitham 1974). Simple waves are conceptually very important for a nonlinear 
theory : they represent exact solutions of the nonlinear evolution equations and, for 
hyperbolic systems, their behaviour provides essential clues for investigating the 
properties of the general wave solutions (as asymptotic waves) (Majda & Rosales 
1984). Also, by using simple waves and suitable discontinuities it is possible to 
construct solutions for the Riemann (shock-tube) problem (Thompson 1986). 

RelatiTiistic fluid dynamics and magneto-fluid dynamics (MFD) are fields of 
increasing importance for several applications in astrophysics, as, for example, in the 
models of extragalactic radio sources (Begelman, Blandford & Rees 1984 ; Ferrari, 
Trussoni & Zaninetti 1983), and in gravitational collapse (Hawley, Smarr & Wilson 
1984), in plasma physics, as in the case of strong ionizing shocks (Taussig 1973) and 
intense charged particle beams (Miller 1982), in nuclear physics, as in the case of 
heavy ion reactions (Amsden et al. 1978) and phase transitions to a quark-gluon 
plasma (Clare & Strottman 1986). 

In this paper we shall investigate the breaking of a relativistic simple wave, which 
is essential for understanding the formation of discontinuities in relativistic fluid 
dynamics and magneto-fluid dynamics. 

This problem is obviously relevant for astrophysics. In  particular, the solutions 
which we shall investigate could be used as benchmarks for testing general 
relativistic MFD numerical codes used in astrophysics (Hawley et al. 1984), in the 
same way as the solutions of the relativistic shock-tube problem are used for general 
relativistic fluid dynamics codes. We notice that the results presented in this paper 
could be of interest also for laboratory plasma physics, in the area of plasma heating 
by strong shocks. 

The plan of the paper is the following : in 9 2 we recall some basic results from the 
theory of simple waves; in 93 we compute the critical time for classical fluid 
dynamics and MFD. These results will be used for comparison with the relativistic 
ones. 
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In $ 4  we investigate the breaking of simple waves in relativistic fluid dynamics and 
MFD. 

Finally in 95 we describe our numerical computations, and conclusions are 
drawn. 

2. Simple waves and breaking time 
Let us consider the following quasilinear system of partial differential equations in 

R4 (with coordinates x“, where xo = t can be interpreted as time and xi are spatial 
coordinates in a given inertial frame) : 

A“a,u = 0 ,  (2.1) 

where u = (ul,. .., u ~ ) ~  is the field vector and A“ = A“(u) are N x N smooth matrices, 
the superscript T denotes transposition and a, are the partial derivatives with respect 
to x“. In  the following, greek indices will run from 0 to 3 and latin ones from 1 to 3. 

A simple wave solution is a smooth solution (Jeffrey 1976; Boillat 1970) 

with 

Then (2.1) yields 

We introduce the normal speed of propagation A and the normal ni through 

where IV#l = (ai # aj # 8);. 
Then (2.4) can be rewritten as 

du 
(A%, - hAo) - = 0. 

d# 

Let A(”) be a simple eigenvalue of the matrix A, = Ainri and d‘k) the corresponding 
eigenvector with respect to the matrix Ao (assumed non-singular), i.e. A‘”) and d(’) 
satisfy 

Equation (2.4) will be satisfied by 

du 
- = n(#) d q 4 ,  ni),  
d# 

where n(q5) is a proportionality factor. 
Notice also that, from (2.5), there follows for the phase # corresponding to A(’), 

a, #+ iV#l A(”)(u, ni) = 0. (2.81 

If one were able to determine explicitly N - 1  first integrals of (2.7) J,(u) = 
constant, . . . , JNPl (u)  = constant, one would have found an explicit simple wave 
relationship (2.2) ; then (2.8) would give an explicit expression for # = $(x“). 

The functions Jl(u), . . . , JN-l(u)  reduce to the well-known Riemann invariants 
when N = 2 (e.g. in the case of isentropic one-dimensional gas dynamics). I n  general 
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these first integrals are called generalized Riemann invariants (Jeffrey 1976) or 
simply Riemann invariants. Notice that J1, . . ., JN-l are constant along the 
h(k)-characteristics. 

In the following we shall consider one-dimensional propagation, n = constant ; 
therefore A(k )  is independent of ni.  It is easy to show that it is not restrictive to take 
d of the form 

#(x, t )  = x-h(u) t ,  

taking ni = ( i , 0 ,0 ) .  (2.10) 

Notice that A ,  in general, is not a constant and the initial profile changes its shape 
while it propagates. 

The goal of this paper is to calculate the earliest time a t  which the profile breaks 
(becomes multivalued). In order to achieve this, let us rewrite (2 .8)  in characteristic 
form (Whitham 1974, p. 2 0 ) :  

(2.11) 

Along each characteristic the field u is constant, as follows easily from 

- -__-  - 0. 
du d u d #  
dr  d# d r  

- 

Then the characteristics are straight lines in the plane (2, t), with slope h(k)[u(d)] and 
equation 

with 

x = t + h ' k ' [ U ( $ ) ] t ,  (2.12) 

x(t = 0) = t. 
Let us consider for (2 .8)  the initial-value problem 

$to, x) = f (4 ( X E  w. 
If a characteristic intersects the x-axis a t  x = then 

d = f ( O  
along the whole characteristic according to (2 .11) .  

Allowing h t o  vary, we obtain 

1 d =f(O,  
E =  x-A'""u( f (a)] t ,  

(2.13) 

which is the solution in implicit form. 

(Whitham 1974, p. 23) the condition 
A break occurs when two characteristics intersect each other: this implies 

dh(k) 
l + - t = O .  

d5 

The infimum positive value o f t  is called the breaking time (tB) 

(2.14) 

(2.15) 
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I n  the following we shall give as initial condition 

(2.16) 

with a the amplitude and d the wavelength. 

3. Classical magneto-fluid dynamics : one-dimensional flow 
Let us consider a compressible fluid in the presence of a magnetic field H .  
When viscosity, thermal conductivity and electrical resistivity are neglected, the 

motion is described by the equations (Cabannes 1970) 

= - V p +  (V x w) x p H ,  

aP -+V . (pv )  = 0, 
at 
as 
-+v.vs = 0, 
at 

I v x ( 0  x w) = 0, 
aH _ _  
at 

where v is the fluid velocity, p the mass density, s the entropy, ,u is the magnetic 
permeability (assumed constant) and p is the pressure, which is an assigned function 
of p and s. 

For one-dimensional flow, the system (3.1) can be written in the matrix form 
(2.1) : 

where 

0 

- v ,  
-v* 

0 

0 

0 

0 
0 

0 0 0 0  0 0 0  

V ,  

0 V ,  H ,  0 - H ,  0 0 
0 H ,  - H x  0 0 0  

-- PH, 0 0 ?J, 0 0 0  

0 -__ p H ,  0 0 v, 0 0 
P 

P 
0 0 P O  0 v, 0 
0 0 0 0  0 0 v x  

We observe that the component H, of the vector u is not an unknown of the problem, 
because we have 

2- aH - O*H, = f ( x ) .  
at 



Breaking of relativistic simple waves 227 

According to (2.6), (2.10) the eigenvalues of the matrix A, = A 1  are then 

pH: 
A(') = v, (material waves), hy) = v , - k ( T )  (Alfvh waves), 

(magnetoacoustic waves, fast and slow) 

(3.3) 

with c," = (tlp/tlp)ls the sound speed. 
The state equation coupled to (3.1) will be the polytropic one: 

where y is the polytropic index, K = exp (s/c,), where c, is the specific heat a t  
constant volume. In  this case the sound velocity is 

In  the following we shall consider simple waves, and the associated breaking time, in 
some particular cases. 

3.1. Fluid-dynamic case 
For H = 0 we obtain the fluid-dynamic case, and for purely longitudinal motion 
u = (p ,  s, v , ) ~ .  The eigenvalues (3.3) reduce to 

h(O) = v, (material waves), A(') = v,.c, (acoustic waves). 

The Riemann invariants associated with acoustic waves are 

J1 = s ,  J+ = v,T -dp, (3.5a, b)  t 
with the T sign referring to A(". 

1959) : 
From (3.5b) using (3.4), we can obtain the useful relationships (Landau & Lifshitz 

c, = c,o-kk(y-l)v,, (3.6) 

v, y-1 
p = p o  l&+(y-1)- . [ cso l 2  (3.7) 

cso and po are respectively the sound velocity and the density, calculated a t  v, = 0. 
From (3.7) we know p in terms of v,, and because s = J1 we obtain the simple wave 
relationship (2 .2 )  : 

and in this case 

u = u(v,), 

+ = vx 

Formula (3.7) gives us also a constraint on v,: 

otherwise cavities and instabilities may occur in the fluid. 

(3.7) : 
Now let us calculate the breaking time (2.15) for the simple wave solution 

dh") dh") dv, - dv 
z(Y + 1) - L E  > 

- 
d5 dux d5 d5 
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but according to (2.16) 

Then we have 

(3.9) 
d - - d 

t, = inf - 
277 (y+l )nv , '  ( y +  l)v,n cos-t 
d 

Hence t, is a decreasing function of the amplitude wo and increases with the 
wavelength d .  

3.2. MFD case with vy = v, = 0, H ,  = 0 

For the sake of definiteness we have chosen the case in which the motion is purely 
longitudinal and associated only with magnetoacoustic waves, with u = ( H y ,  H,, v,, 

Then from (3.3) the slow magnetoacoustic waves coincide with the material wave, 
P >  P)T. 

and for the fast waves one has 

(3.10) 

The associated Riemann invariants are 

J - s  J -- H ,  J =-, Hz J+ = v x f  dp, (3 .11ad)  
P -  

1 -  2 -  3 
P 

(with the sign f associated to A@)) .  

density at the stagnation point, po. Then we can define 
It is convenient to write (3.10), (3.11) in a dimensionless form by introducing the 

where the suffix 0 indicates that  the quantities are evaluated a t  the stagnation point, 
and W is a dimensionless parameter. 

I n  the new variables equation (3.11d) reads, for a polytropic gas with y = i, 

(3.12) 

which gives the simple wave relationship ( 2 . 2 )  with # = vz and the constraint 

(3.13) 

( P  > 0) 
2 
w fU, 2 -[l-(w+l):]. 

Let us calculate the breaking time for the progressive simple wave solution (3.12) 
(+  sign): 

but according to (2.15) 

,-0 = ~ O I C 8 0  
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and from (3.10) one obtains 

The breaking time is then 

(3.14) 

It can be checked that when W = 0 (no magnetic field) the above formulas reduces 

The infimum of @ is found numerically and the constraint (3.13) is taken into 
to those appropriate for the purely fluid dynamic case. 

account. 

4. Test fluid for special relativistic magneto-fluid dynamics 
The main equations for a relativistic electromagnetically interacting fluid are the 

energy-momentum conservation, the mass conservation, and the Maxwell equations, 
together with the Einstein equations which give us the metric. 

An easier situation is obtained when we neglect the gravitational field of the fluid 
in comparison with the background gravitational one (neglecting Einstein's 
equations) : in this case we deal with a 'test fluid '. The equations for such a fluid have 
been formulated by Lichnerowicz (1967) : within a material medium, a general 
electromagnetic field is represented by two skew-symmetric field tensors Ha, and 
Gap which satisfy the Maxwell equations 

V,(C~,Y~H,,J = 0, V,G"P = JP, (4.1 a ,  b)  

where Ha, is called the electric field-magnetic induction tensor, and G,, the magnetic 
field-electric induction tensor, while ea@ys is the Levi-Civita tensor and V ,  denotes the 
covariant derivative with respect to the metric. 

Generally one can define covariant electric and magnetic fields in the comoving 
frame by 

E, = H , d ,  (4.2) 

(4.3) 

where ua is the fluid 4-velocity, and p is the magnetic permeability assumed 
constant, 

We observe that by the antisymmetry of Hap, 

E,u" = b, ua = 0. 

The current density in a plasma is given by 

J" = vu"+~r"PE,, (4.4) 

where v is the charge density measured by a comoving observer and cY@ is the 
conductivity tensor. 

The usual assumption of relativistic magneto-fluid dynamics (RMFD) is to assume 
the medium isotropic ( g a p  z ~ r , , g ~ p )  with an infinite conductivity (go+ 0 0 ) :  such a 
situation may occur for hot and dense plasmas (Bakenstein & Oron 1978). 
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Then from (4.4), in order to maintain finite the current density, it follows that 

Ea = 0 (4.5) 

which, in the classical limit, corresponds to the well known MFD condition 

V 

c 
ES-xpH = 0. 

In the RMFD approach, G,,=pH,,  and J" does not appear anywhere in the 
equations : it is defined by the Maxwell equations (4.1 a) .  

I n  the following we shall consider the flow for a test relativistic magneto-fluid in 
the flat space-time of special relativity: the equations are then 

a , ~ a ~  = 0, a,(pq = 0, a ~ ~ a h p - ~ o q  = 0, (4.6 a-c) 

where Tap is the total energy-momentum tensor, p is the rest mass density, and 
diagg,, = ( -  1 , 1 , 1 , 1 ) .  

For a perfect fluid (non-dissipative) Tap reads (Dixon 1978) : 

Tap = ( e  + p + pJhJ2)  uad+ ( p  + +lhlz) f p  -pub"@, 

where p is the pressure, (hi2 = ha ha > 0, and e is the total energy density, 

e = pc2 +pe, (4.7) 

with E the internal energy, and c the light velocity. 

first law of thermodynamics : 
The fluid quantities p,p, e (all measured in the local rest frame) are related by the 

Bds = d($+pd(i). 

where s is the specific entropy and 0 the absolute temperature. 
To the system (4.6) we must add an appropriate state equation of the form 

e = e ( p ,  8) (4.9) 

For a monatomic relativistic perfect gas, Synge (1957) derived an equation that 
looks like the usual classical one: 

(4.10) 

where kB is the Boltzmann constant and K,(z) are the modified Bessel functions of 
the second kind (Magnus & Oberhettinger 1966). For such a gas, the ratio y of the 
heat capacities is (Ue Groot, Van Leeuwen & Van Weert 1980) 

(4.11) 

We observe that y is a function of the temperature, and it is possible to  prove that, 
in the Newtonian limit ( z  + l ) ,  y = 8, whereas in the ultrarelativistic case ( z  + l ) ,  
y = g. 



Breaking of relativistic simple waves 23 1 

In the following we shall consider a relativistic perfect gas with constant heat 

Euar& -ph"<+p'"ph,, m", 0" 
ha C, - Ua K, f"', 0"' 

71 % 0; 3 eku",  0" 
0; , o;, o", u" 

A" = 

capacities, e.g. a polytropic gas 
p = K(s)pY, 

' 

(4.12) 

with y = 8 and y = 4 (Newtonian and relativistic cases) ; in this case the internal 
energy density is 

P c = -  
y-1'  

The sound speed is given by 

(4.13) 

Another interesting state equation is the barotropic one, where 

e = e(p) .  

To this class, belongs the state equation for a radiation-dominated gas, 

p = (7- 1) e,  (4.14) 

From the hypothesis of one-dimensional motion we obtain from equation ( 4 . 6 ~ )  

(4.15) 

ua = r(l,v,/c,v,/c,v,/c), ha= (ho,h1,h2,h3) (4.16) 

with y = 5. 

the invariant of the motion 
J, = uohl-ulho = const. 

By writing 

where r is the Lorentz factor, it follows from u, ha = 0 that 

J, = ~ { ( C ~ - V ~ ) ~ ~ - ~ I , V ~ ~ ~ - V , V ~ ~ ~ } / C ~  

which, in the non-relativistic limit, coincides with H, .  

to (Anile & Pennisi 1987) 
Manipulating system (4.6) it is possible to see that such equations are equivalent 

u"a,e+(e+p)a,u" = 0, (4.17) 

uaa,S = 0, (4.18) 

1 

e+p 
ua a, hp- ha a, up+-- (upha - hkaek) a,p = 0,  (4.19) 

( e  + p  +pJhJ2)  ua a, u' -pha a, h' + (hua + uUua) ph, a, hb 
1 

e+P 
+ - - ( ( e + p )  hua-e~pJh~2uuua+phuha)a,p = 0, (4.20) 

where ea = (ae/ap)s = c2/c,". 
Equation (4.17) is the energy conservation one, (4.18) is the adiabaticity 

condition, (4.19) are the Maxwell equations and (4.20) the Euler equation. This 
system can now be written in the form (2.1), with 

(4.21) 



232 0. Muscato 

where o", 0", indicate tensors and vectors with vanishing components, and 7 = e+p, 
E = T+,u(h/2, p" = Va+uTua, hap = g"~+u"u~, mTa = (yh'"-eb,uu)hl2u'u"+,uh'ha)/y, 

A detailed study of the mathematical structure of system (2.21) (eigenvalues, 

In particular, in the case of one-dimensional flow, the determinant of A, = Al is 

f = (uThaeb - uah')/T. 

eigenvectors, hyperbolicity) has been performed by Anile & Pennisi ( 1987). 

det A, = Ea2A2N,, 

where 

(4.22) 

] (4.23) 
a = T(v,-h)/c, B = hl -hhO/c, G = 1 - h 2 / c 2 ,  A = Ea2 - B2, 

N ,  = T ( e ~ - 1 ) a 4 - ( q + e ~ , u J H 1 2 ) a 2 G + B 2 G .  

The solutions corresponding to a = 0, A = 0, N ,  = 0 represent material, Alfvkn 
and magnetoacoustic waves respectively. 

Let us consider some particular cases. 

4.1. Relativistic Jluid dynamics case 

For ha = 0 we reduce to  the fluid dynamic case: for purely longitudinal motion 
(vy = v, = 0 ) ,  u = ( s , p ,  w ) ~  with v = vz and the eigenvalues of A, are 

V f C ,  
1 * vc,/c2 

h(O) = v (material waves), A(') = (acoustic waves). (4.24a, 6) 

The Riemann invariants associated with acoustic waves are, besides J, (Liang 
1977) 

(4.25a, b )  

We shall consider two kinds of state equation, from which we can express c, = c,(v), 
and consequently u = u(4 )  with q5 = v. 

4.1.1. Relativistic polytropic gas: p = lcpy 

From (4.253) we obtain 

cso+c(y-l)f 
c, , -c(y-  1): 

(4.26) 

with cso the sound speed a t  v = 0. From the constraints 0 < c, < c(y- 1);  we obtain 
for progressive waves (minus sign) 

and for regressive ones (plus sign) 

(4.27) 

(4.28) 
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FIGURE 1. Relativistic and classic fluid dynamics y = t :  (2’) = 2nt,csO/d versus (v) = V~/C , , .  

The lower curve corresponds to the fluid case; the middle one is obtained for co = 0.4. 

If we introduce the non-dimensional variables 

- v -  c = c s o  
q,l=- 

CSO c 

the breaking time, according to the definition, is 

(4.29) 

where the first sign is associated with A(+).  
If c + 1, the above formulae reduce to those of the non-relativistic case treated in 

$3.1. 
The infimum of (4.29) is found numerically, taking into account the constraints 

(4.27), (4.28), i.e. the computation stops if those inequalities do not hold. In  figure 1 
we compare the case with y = (both progressive and regressive) with the non- 
relativistic case (3.9) for several values of the parameter C. 

4.1.2. Barotropic gas: p = (y-l)e,c; = ( y - 1 ) c 2  

From ( 4 . 2 4 ~ )  we evaluate dA/dg and, after lengthy calculations, find 
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t 
83.18 

21.88 

5.154 

1.513 

0 0.4 0.8 1.2 1.6 
(0) 

FIGURE 2 .  Relativistic fluid dynamic case with y = $: (5") = Zd,c,,/d versus (v) = vo/cso. The 
upper curve corresponds to the barotropic case; the middle one is obtained for c, = 0.8. 

n 

0.158 

0.003 I 
0 0.2 0.4 ( v )  0.6 0.8 

FIGURE 3. Barotropic relativistic fluid dynamics : (T) = Znt, cs,/d versus (v) = vo/e,, for several 
values of y .  

For y = 2 we have an incompressible fluid, and if vo $: c then t, + + 03 : this is an 
exceptional case, in which the shock is never formed. If vo = c and y + 2  then 
t, 3 0 : this behaviour is plotted in figure 3. 

4.2. Magneto-Jluid-dynamic case with vy = v, = 0 
Simple wave solutions associated with (4.21) have been found explicitly, in some 
cases (Anile & Muscato 1988); that happens when the fluid's motion is purely 
longitudinal and the magnetic field a t  a stagnation point is purely transverse, 

v Y Z  = v = 0, hl(0 = 0) = 0. (4.31) 
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Hence from the invariant J, it follows, throughout the flow, that 

hl = 0. (4.32) 

Under the above hypothesis let us evaluate ha from the definition (4.2), using the 
appropriate electromagnetic tensor (Landau & Lifshitz 1959) : 

ho = 0, h' = T H ,  = 0, h2 = H,, h3 = H,, 

where H,, H,, H ,  are the components of the magnetic field in the orthogonal Eulerian 
frame of reference. The field vector reduces to 

u = (r, v, H,,H,, p ,  S)T. 

This case is the analogue of the previous one treated in $3. 

coincide with the material one; the fast one is given by (we put v = vz) 
Because B = hl-hho = 0 from (4.23), the Alfvch and the slow MFD waves 

the associated Riemann invariants are 

(4.33) 

(4.34a, b) 

with the sign T associated with A$*). 
The invariants J2,  J3 give us explicitly H,, H ,  as functions of p ;  J+ gives us a 

relationship between v and p that in general must be solved numerically. We write 
this relation in the form of a differential equation 

(4.35) 

which enables us to express u = u($ )  with $ = TI. 

polytropic one. 

4.2.1. Relativistic barotropic gas: p = (y-  1) e ,  c," = (y-  1)  c2 

As before we shall associate with (4.34) the barotropic state equation and the 

From (4.34a, b)  we obtain 
H ,  = Jzp'/Y, 

H ,  = J3p'/Y. 
(4.36) 

Let p ,  be a reference pressure; then we can introduce the non-dimensional 

(4.37) 
variables - P -  21 V 

p = - - ,  v =-=- Po c, c(y-l)$' 

and because - 1 < v/c < 1,  we have the constraint - 1 < ~ ( y -  1); 6 1. 
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FIGURE 4. Barotropic RMFD with y = $: (T )  = 2nt,c,,/d versus (v) = vo/cs0: the lower curve 
corresponds to the fluid dynamic case. 

The breaking time for y = $, according to the definition, is given by 

27rt c 
d 

-- * - inf +([), 
5 

9 (4p+ W$) (41713 + Wj+) ( 1  
277 
d 

+(O = -5 
p(p + W#) Do cos - [ 

(4.38) 

where W = puJHli/p, = p ( J ~ + J ~ ) p ~ ,  a non-dimensional parameter, and the sign & is 
associated with A$*) .  

The fluid case (without magnetic field) is obtained for W = 0. The infimum of (4.38) 
is found numerically by solving the differential equation (4.37) : the initial conditions 
are chosen such that 

p ( v  = 0) = p,. 

In  figure 4 we compare the breaking times for barotropic fluid (y = $) and magneto- 
fluid. We observe that the effect of the magnetic field is to raise the curves with 
respect to the purely fluid case. 

4.2.2. Relativistic polytropic gas: p = KpY 

express p = p(v ) .  

point; then we can introduce 

From (4.34b, c )  we obtain the same formulae (4.36), and (4.35) enables us to 

Let po and c,, be respectively the pressure and the sound velocity a t  the stagnation 
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The breaking time is 

237 

I 
(4.39) 

with W = ,ulH(;/p,, F =  cso/c, L = poc2/po, where the sign k is associated 
with hi". 

In  order to find the infimum of (4.39) we must solve (4.37) by a numerical 
integration : the initial condition is 

P ( V  = 0) = Po 

that is analogous to the relativistic-fluid-dynamic case where c,(v = 0) = c,,; 
now the thermodynamical constraint is 0 < c," < c2(y -  1 )  which is imposed during 
the integration. 

The infimum of (4.39) is found numerically for y = g, and taking account of the 
two parameters W (related to  the strength of magnetic field, and c (related to the 
Riemann invariant J & ). 

I n  the non-relativistic MFD regime we introduced the parameter 

the relationship between W and W is 

(4.40) 

In  figure 5 we fix W = 1,  allowing cto vary, with y = 2: ifc+ 0 our curves approach 

The above formulae reduce to the corresponding non-relativistic cases (with or 
the Newtonian MFD case. 

without magnetic field) for c 4 1. 

5.  Conclusions 
We employed two algorithms in order to find the infimum of @([): the first one 

operates by dividing the interval allowed to 6 and evaluating the function at these 
points. 

With the second one we looked for the zeros of d@/dc is a suitable interval, and 
then the infimum is found between these zeros. 

With such methods t ,  is valued with a precision of five significant digits. 
I n  figure 1 we compare, in logarithm scale, the non-relativistic fluid case (lower 

curve) with the relativistic one for y = 5 (the middle curve is obtained for F = 0.4, the 
upper for C =  0.8). 

The relativistic curves stop because we have the constraints (4.27), (4.28); the 
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0 0.4 0.8 1.2 1.6 
( 0 )  

FIGURE 5 .  Polytropic RMFD and classical MFD with y = $, W = 1: (5") = 2nt,c,,/d versus 
(v) = vo/cso. The lower curve corresponds to the classic case; the middle one is obtained for 
co = 0.6. 

h 199.5 
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( 0 )  

FIGURE 6. Polytropic RMFD and classical MFD with y = g, c = 0.4: (T) = Zj.rt,c,,/d versus 
(v) = vo/cso for several values of W .  

effect of relativity is to increase the breaking time with respect to  the Newtonian 
case, but when v0 approaches the limit value, the breaking time decreases quickly. 

I n  figure 2 we compare the relativistic fluid dynamic cases with y = 2: the upper 
curve represents the barotropic case (4.30), the other ones the polytropic case (4.29) 
for two values of the parameter C. 

The barotropic cases (which have no Newtonian analogues) are compared in figure 
4 for y = 2: the effect of the magnetic field is to  increase the breaking time, i.e. the 
magnetic pressure slows down the breakdown. 

In figure 5 we compare the polytropic RMFD case (4.39) with the classical one 
(3.14) : we fix y = = 0.4 and and W = 1, varying C. Vice versa in figure 6, we fix 
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vary W :  again the effect of the magnetic pressure is to increase the breaking time 
when W increases. 

From the graphs we notice that in all regimes (classical and relativistic) t ,  is a 
decreasing function of v,, and an increasing function of the wavelength ; moreover we 
obtained the same results for progressive and regressive waves. 

This research was partially supported by the Italian Ministry of Education. 
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